AD-A181 852 USER INTERFACE TECHNOLOGY SURVEY(U) CARNEGIE-MELLON /1
UNIY PITTSBURGH PA_SOFTWARE ENGINEERING INST P FEILER
APR 87 CMU/SEI-87-TR-6 ESD-TR-87-107

UNCLASSIFIED F/G 12/% NL

e Vst
%"d(‘.l“?v"s i".\“.!“.l"'l

Frris armar ’

Aooaﬁ;oa For

DTIC TAB
Unannounced o '
Justifioation ol

by. A
Distribution/ -

Availability Codes

vail and/er .
Dist Special - .

-l

Software Engineering institute
Camnegie-Melion University
Pitsburgh, Pennsyivania 15213

SRR
BT

box

b s ¢

Inlnagd
‘ E
i .
{

U N e

-— Y g W e e wer

20" o fa

R s e R S

KN
. «
.
.

iy

as
~
-

Baooy atuint!
AU (3.3 8 LT Frei,

IM-—-..W, e .-v”
AVSLE R It Rl F1H

gebal qititdsll A
ao\Lap Ll A

t
~
8

.‘A‘\

[

K

i+ aron 1.« e o e b A 2 05

S et ot

CO® ONNNOO & OGNONNN =

>
4

RERBRLE BN NS

ki
-

M
“.
»
s
. 38
»
0
-
@

&

w “m results, peri-
olis " of wens, and of examples of the
| ﬁm‘ M Mgm

soquiroments for technology Swough mmumm
3)1---...'070 mw*dmmmwm}-

otls.
. (n:u)mmmummmmm
he potentisl of new technolegy - for solving signtiicant problems, evaluating new software tools
and metiinds, matohing enisting technologies 10 needs, and determining the potential payoft of
now tecinsiegies. m“aumbuuonmmmm
“mm)

C Tis report 1s one of & series of survey reports. R s not Intended 1 provide an exheustive
discussion of topics pertinent 1 the drea of user intertace technology. Rather, it is intended as an
irdermative review of the technology aurveys were conducted in iale 1985 and
oasly 1980.

Members of the project recegnized that more general technology surveys have been conducted
by other invesligaions. The project did not altewpt 10 duplioate those surveys, but focused on
poinis not addressed In those surveys. The goal In conducling the SEI surveys was not 10
describe the technology in general, bt 10 emphasize issuss that have elther a strong impect on
or are unique 1 soware engineering environments. The cbjective In presenting these reports is
1 provide an overview of the technologiss that are core 1 developing software engineering
onvironments.

“'aﬁmﬁawmm
“dﬂuﬁrmﬁlm wu soltware

3 1.1. Tln Ilurlrm

mwmbnmdnmmummbm siore, manipulate and
siiove duta, any Inlisle commends. & enabiss communicalion between the user and the com-
- puler. Thwough She:ingeriase, 1he eser guls an impression that influences judgements about the
systom. A wol-dusiined user nlértane allomws the user relatively eady ac0ees 10 the pewer of the
syslem. Conversely, & peorly designed user interiace can make even the best system seem
unduly complioated, thereby rendering R virtually urusable 10 all but a handhil of expents.

User interiaces of applications can be divided into noninteracive interfaces and interactive inter-
faces. For noninteraciive interinces, input must be prepared belore the athusl euscution of the
respective application. Resuling culput Is ollen fogged for iater printing and examinaiion. De-
- spie their chasacteristios, these applications are often hwoked Swough ieractive media such as
terminals and workstations. Appliostions with interaciive intertaces tahe better advardage of the
potentiais of ntericive media. They are Mmere responsive 1 the needs of thelr users, provide
move immediale feedback 10 USSr 0UONS, aNJ INCIEAE UBEr Produciivlty.

Because of their rising popularily, nteraciive interfaces have received siientien oM NUMerSus
discipiines, sach coniribuling new insights into the strengths and weeknesses of varisus inter-
active user interfaces. Research and development efforts related 1 human-computer interaction
have been carried out in technical and humaen factors arees.

1.2. Technical Contributions

. n the technical area, contributions include interaciive graphics, window systems, user interface
management systems, forme systems, document production systems, device technology, and

. programming systems. These contritations have provided a number of allernative modes for
human-computer interaction.

ommmunmomawawmm
niques based on poiniing devices and graphic displays.

e e s wate = T A

A T T

ummm

uummm-mmummmnm
aapetts of human-compultr devaction. Relovant research is being conducted In ergonomics,
mmmmnﬂmummm

¢.0.. the iiarface between the user and the comprter, affects pecpie's abilly 10
periorm efleciively In the environment.

Cognliive analyzes the process of interaction in order 10 develop
.“dv perceplion; cognilion, and molor reEponNee activities that & user per-
forms. Such models are used 10 predict the uesr's periormance and derive guide-

o Behavisrsl poychology analyzes aciivities of users 10 discover recurrent pattems
and develop a model descriding the behavior. :

oVisual arts conirbule 10 user interfaces by developing symbol systems for
representing information and improving the assthetics of graphical representations.

ommmmeMdmmmm
vides bolh praciical guideines for system design and methodologies for evaluating
he unclional effectivenees of existing interactive system designs.

, , ‘_mmdﬂnmm the ap-
g) _ R0V I8 largely difven by hardware technology and techniques
e immm _The acceptance of these techniques is determined by how
Sy 66ali the noeds of boli g el use’ and the applicaions programmer. Human factors

mm«muuummmmummm
~ Chapiie 3 discusess diNerert application areas and their impact on user intertace technology.
mmmwwwmmmumm
MAdmummmw.ﬂnywbhw.w
or § discusees humen faciors isswes in human-computer interaction, and Chapter 6 discusses
~ wglomentalion considerations of User interfaces, Le., how the considerations are realized. The

mmuybonhhhﬁum

S ,

The wide range of applicalion arees places varying demands on & user interface, resulting in an
smezing vairlety of user intertace appearances. Application areas inciude the office environment,
engineering environment, real-ime environment, mixed media environment, and software engi-
neering. mmwummammmmmwm
faces. mmnummm-mmammmwmam
cation demands on user interfacss. The remaining chaplers of the report concentrate on the
application area of software engineering.

3.1. Office Environment

The office enwironment refers 10 technologies such as office information systems (OIS), manage-
ment information systems (MiS), and data processing (DP). in this application area, users often
have limited knowledge of computer systems. Since there is a iarge number of users, training
users is a major concern. In OIS, one approach 10 intertace design has been 10 emulate an
environment with which the user is familier [112]. For example, the desktop metaphor has been

used 1o describe word processing, flling, retrieving, and browsing capabilities that are essential to
onling office work.

Document production is of great concem to an office that generates large volumes of documents,
especially reports with tables, figures, bibliographies, and cross references. integration of docu-
mentation 100is Is important when there is the need 10 move documents among different users
and different to0ls such as document preparation tools and electronic mail systems. Another
issue of integration is the inclusion of speech as an additional communication medium, which can
be in the form of stored and retrieved messages [124] or speech recognition tools [96].

Management information systems require support for mulipie views of information through busi-
ness graphics. Part of the viewing operations are summaries of the information. in an interactive
system, changes 10 the information in one view is expected to be propagated. Common represen-
tations for underlying information, such as the representation for spreadsheet data as promoted
by Microsoft (referred 10 as SYLK [82]), allow information exchanges among tools not necessarily
designed together. The users of such systems, often nonprogrammers, should not need to know
the terminology of the mechanisms being used 1o achieve appropriate views. Based on the type
of data and the desired effect (e.g., relative comparison), R would be highly useful for the system
{0 provide the most appropriate and effective representation.

Data processing deals with large volumes of information. Since such information often affects
peopile and their ives directly, stringent checking for consistency in information is important. This
applies both 10 interactive and noninteractive data entry as well as data retrieval and printing.

gy
R b
i
25
.
S
4

User interface Technology Survey " CMU/SEI-87-TR-68

3.2. Engineering Environment

The engineering erwirorvnent includes computer-sided design (CAD), architecture, and mechan-
ical engineering. in this application area, information is best presented graphically to show prod-
ucts and composed components that potentially decompose into smalier components. All of these
components may be iInterconnecied in ways that virually are impossible to describe without the
ald of graphics. Such components frequently are standardized and made available to the user
through oniine raries. Usually, there are application-specific constraints regarding component
interconnections. These consiraints may range from logical consistency to layout imitations.

For engineering appliications that manipulate objects in three dimensions, the use of three-
dimensional graphic views has opened new avenues. In chemistry, for example, visual examina-
tion of molecular structures has ylelded new insights. Cumrently, a variety of techniques are
avaliable for represeniing three-dimensional shapes on two-dimensional screens, ranging from
polygon meshes 10 shading and use of color and intenslty [41).

3.3. Real-Time Environment

The real-ime environment refers 10 applications where time is a critical factor. Two obvious
applicstion areas are process control and simulation, (e.g., fiight simulation). In process control,
the user interface is expecied 1o give the user an impression of the progress of an ongoing real
worid process. Thus, a large variety of sensory input devices with specific applications may have
to be handied. For the user 10 make decisions and provide feedback to the application, infor-
mation about the process and s changes must be represented properly t0 be communicated
effectively. Today, large displays incorporating graphics, color, animation, and audio output are

- commonplace.

Simuiation appiications try 10 model a real world environment and process for the user. In some
cases, a display screen can satisfacioryly present a colorful, three-dimensional, moving world.
Other applications use additional media, often physically more realistic, to communicate the im-
pressions of the real worid. Coordinated control over these devices is required to maintain a
consistent view of the simulated image of the real world.

3.4. Mixed Media Environment

The mixed media environment refers 10 systems such as electronic publishing, electronic music
composition, imaging, and speech processing. Electronic publishing pushes technology in sev-
eral ways. Digital video and audio disks are used for information dissemination with local retrieval
capabilities. Oniine retrieval capabilities are provided 10 a large population through videotext and
similar technologies, which are being expanded to provide data entry capabilities. Finally, com-
puterized support for production of publications is provided.

Electronic musical composition has encouraged new techniques and technologies for entering
information and for visual display [7]. Current technologies allow the composer 10 enter a score
into the system, synthesize orchestral components, and revise the score where necessary.

graphice-orientedt
mmmumumwmw sysem

3 ﬁwmmww»mwwwm
. guages.. W“ﬁaWﬁWMMnMdh
Ummbrmm Geaphicsl representations &re ot only present in require-

ments, specificalions, and design documents, but are also applied during coding, debugging, and
mmmm '

sand Tm

’ummumhmammn
- umm Fisst, hasdware Sachnolagies and their logioal coun-
mmmmpmnmmumn.

mwumm

7451.”0,“' :

For a long time the form of interaction with the user was dviven by the miislions of $he VO media
mmummmmnmnﬂuummm
' WMDMWNMWMMIMD&IIU“
mmumdmnnmm Wderactive de-
MM&MWNWMM”UMMM
mmnmawm One classification is eriented toward the oulput devioe,
* - whereas & second claselication Is centered areund the Input devics. Over tme & set of logical
mmmummammumumu
e NWWMM“MLNMG‘“W“&
each of the clasees of culput and input devicss.

4.1.1. Character Output Devices

The first two classes, harxicopy terminals and low funciionallly CRT terminals, are mentioned
because they had a strong Influence on the appearance of user intertaces, many of which are s\l
in use today (e.g., UNng!.

. Hardcopy terminals, which provide a keyboard as the input device and a coniinuous Paper printer
' as the oulput device, represent a class of low funciionallty terminals. Due 10 the mechenical
nature, they are iow bandwicth devices. The low bandwidth usually causes the dislogue text 1o
be cryptic, 0.g., eror messages are often printed In the form of an emor code corresponding 1 &
text form that must be looked up manually. This terminal class provides single-point oulpat; the
output location (L.e., the location at which the next output will be placed) cannot be reposiiioned.
Line-orlented editing techniques are employed. The hardoopy printout provides a transcript of all
transactions between the user and the computer, which the user can search visually.

Dumb terminals, or low functionality CRT terminals, fall iInto a similer terminal class. The screen
is two-dimensional, but & is treated as a Imied-cutput medium. Output is inserted In the bottom
ine and the remainder of the text moves up (scrolis), discarding the fop line. Thus, R provides a
mied-interaction transcript. Some terminals in this clase permit kmiled ediiing of the bottom line,
Le., erasing characters by backepacing. The nonmechanical nature of the display hardware sup-
ports a higher bandwidth for greater interaction.

YW is & rogistered Yademark of Dell Laboratories. For a st of products that have Yademarhs, 000 Appendix A.

The next class of characier terminals represents CRT terminals with fully addressable screens.
The aursor, Le., the symbol indicating where the oulput is being piaced, can be posiiioned at any
lboation of the two-dimensional character metrix. Such display cepabiities support full screen
odiors with multiple windows, ¢.g., EMACS [121], and forms-based interaction techniques.

A fully addresesbie screen provides a real two-dimensional display capsbilly. A rich set of
soreen editing cperations is smbedded in the display hardwarefimware. R includes operations
such as neert line, delste ine, and repeat commands. Display ativibutes such as reverse video
or flekd projection can be set on a character or ine basis. Some terminals, such as the Conoept
100 terminal, support subdivision of the screen into regions (windows).

The American National Standards instiute (ANSI!) developed a terminal standard (ANSI X3.64)
for full-duplex operation, which was realized in draft form in the DEC VT100 terminal with minor
diierences 1o the approved standard. This standard did not prevent manutacturers from offering
mmm.mm.mmmmmuhuunbmm
of emulation of ANSI X3.64 or DEC VT100 functionaiity. To achieve portabiity of applications
across the range of emerging terminal types, the UNIX operating system provides a virtual termi-
nal inlerface. The implementation of this interface uses a database of terminal-specific character-
istics (termcap [134]). New terminals can be supported by adding the appropriate termcap fo the
database.

4.1.2. Graphics Output Devices

The class of simple graphics terminals represents CRT terminais with character position addres-
sabiity and graphics character sets. Characters in this set provide line drawing elements that
may be composed to achieve the desired effect. An example is the DEC VT102. The technique
of graphic character sets provides imited graphics capabilties, which are used mostly in appli-
cation areas such as business graphics. - This technique is aleo used on many of personal com-
puters The use of color has not permeated software engineering appiications other than busi-
ness graphics for project management.

The class of full graphics terminals is represented by two hardware technologies: vecior graphics,
and biimap graphics. Vector graphics dominated the CAD application area for a long time. How-
over, with maturity and increased dighal processing power, bitmap graphics became the more
prevalent fechnology because & was more versatiie. A bkmap dispiay supports individually ad-
dressabie pixels. Xerox Parc became a forerunner in using this technology in a personal com-
puter workstiation for uses other than graphics applications [12]. The btmap display and avalla-
bilty of the mouse as a pointing device introduced a range of new interaction techniques, many of
which were explored for practical use in the Smaltak system [48]. The high bandwidth communi-
cation provided a means 10 represent information in forms closer 1o those normally used within
particular domains. Examples are WYSIWYG (what you see is what you get) document prepa-
ration systems and symbolic object representation (icons). The dedicated processing power of
such systems enables a human-computer dialogue that is more user friendly, especially for non-
compuler pecple. The resulls of this work are now found in products such as the Apple Macin-
fosh [136).

0

L ;«:_mmmmvnmmmmmwbrmw

s #is QWERTY layout, which s found on typewriiers. Allernative keyboard layouts such as
- Dvorak have been developed, but have not found general acospiance. A basic keyboard usually
- Includes._special keys such a5 the es0epe or the conirol key. A lack of standards results in
mnmmdmmwmmwamm
MWW&W%MW“M..MWW
efficient numeric data enlry, & soreen cureor motion ped, and function keys that can be pro-
grammed 10 execute a sequence of keystrokes or assigned by software 10 perform special func-
tions. Mastin [75] proviies an extensive, although daled, discussion of general- and special-
purpose kisybioards and techniques 10 simulate keyboard extensions such as function keys.

A variety of devices have been developed 10 augment keyboard input, thereby providing a more
effective means for the user 1 address & two-dimensional display. Such devices Include the
. mouse, figit pen; and touch pad. Other devices, such as the joystick, are a realistic means for
providing analog information. The mouse hes found the moet acceptance in software engineering
applications.

4.1.4. Logical Input Devices .

The evaluation of physical Input devices with regard 10 a logical device classification yields some
usehul insights. A set of logical devices has been defined [88, 41] and is supported as part of the
GKS standard [61]. These logical devices support different interaction techniques such as locaior,
pick, stroke, vakusior, choice, and fext. Some of these techniques can be simulated easlly by
using allemalive selections, ¢.g., the choioe selection can be simulated by using picking tech-
niques [36]. As a result, given the assumption thet only one device in acdkiition 10 the keyboard is
avalisble, devices such as the mouse are the most versatile. Preferences between devices within
this group are based largely. on motor skil demands in handiing the device. An analysis of
physical and logical devices and their support for different interaction techniques is provided by
Foley, Wallace, and Chen [42], and Card, Newell, and Moran [26]). Foley et al. describe a sys-
tematic structure based on which devices and interaction techniques can be matched with the
interaction tasis %0 be performed. Card et al. determine experimentally the effectiveness of
several input devices for certain types of operations. Results show that keyboard commands are
more effective for short distance positioning, whereas & mouse is more effective overall.

4.2. Textual Communication

Martin [75] gives a somewhat dated but still valid discussion of textual dialogue altematives. The
fist includes English-language techniques, mnemonics, prompting, menu, and form filling tech-
niques. AR are centered around a command language and different ways of entering command
language statements into the system.

Command languages are the means of communication, not only for the system command inter-
preter, but for appiications as well. Command languages can take the form of natural language,
imited natural language, or programming language. Natural language communication would be

1"

‘ ~mmmmmm

| miled Wiguae capabiliidé that do not axdet
wm‘&mwmamw
— MU.;.“WW Other command lan-
wﬂmwmm 0.0-. coh, a varient

‘ ,[,ummt.mammum
NN Ty G0 SSRNED PN, Wiish My o poshionsl or named. In some len-

"Cu-aﬁﬂmwﬂhmmmmum
) ﬁm*m“

| hWi‘“n*dmm satements, command len-

munu-—mnmuu odsting corenands may be rebound 10
mwmmmnumnnmum
.o 0 Commeng pustdus. Juth NaNees ey B mppored statically, 0.0., at fogin time, or
Gynarsinally. Communds auy 00 NISUeARINd @uns information) twough a direct ink such as
“Unet piies, Suough mmed Sontainers Sueh a8 ‘M bullers” In some ediiors or "clipboards” In
um«mmumommm

mthl“mMMMdmm
bilok. For sxampie, the user may hawe 10 9o & complste command line before the system starts
Muammmnmmmmma

mmmm Mmdmmnmm(m
mﬂ.t)

Towulnmicydﬁnnmmmmmmd
command entry. Experienced users tend ©© prefer interfaces with short queries and few
keystrokes, relying heavily on mnsmonics, funciion keys, and remembered sequences of opera-
tions and commands. Novios users require conversational iIntertaces that guide them Swough the
task with questions 1o which they respond by typing in eRther the answers or a selection character
'f from a displayed menu. An individual user can be a novice with one application and, st the same
time, an éxpert with a dierent applioation. Even within one appiication & user can be an expert in
& subset of ‘commands and a novics in the remainder [137). The proficiency level of a user is
sugmented by frequency of Use. An experienced user may use certain features of an application
only occasionally and, therefore, desire diferent support for these features than for constantly

The system may attempt 10 deduce the level of expertise or let the user decide. Time affects the
lovel of experiise; in other words, nonuse of an appiication may regress the user from expett to
4 novics. The user may be forced into one dislogue style based on the system-deduced levet of
experties or be allowed 10 switch freely between styles.

w

, ve saln. For euample, on the Xerex Star flsser-
- ouiindy o 96 ";‘Amahqummumum-m
. mmﬁmmmdnwnﬁw;

wmmmmumunm Simple toxt ontry ervors
VN Faponses: the ueer may bs informed by a oryplic message end ashed o

hand, the ueer may o sbie 19 recall the commend and odit & using stendard
'mmwumnﬂbmnmmmmm
epeling) and request confianalion from the user (DWIM or “De What | Mear” [129, 1080. The
wmwnqNMmednmmnim
mands. Some enoneous commands Mmay advertently iwehe & cammand that pessibly destroys
informalion, Inadvertent sxecution of deshustive cammands can be galeguartied against fwough
- 89 undo funclion, frequent checkpolnting, and & request for canfiwnation by the user.

o The avalishilly of vandomly sddressahls two-dimensions! dhplngs staried an era of Wwo-
1 . cimensional comwmuniodiien. These displiys were first aveliable in the form of character CRTs
S sugmented with a graphic character set, and vector graphic termingls. Recently, bimep ter-
E minals have prolierated the mariet of computer workstations. Together with the avalisbily of
% pointing devices, these displays heve encouraged new forms of user interaction. These Include
form Mg systems, WYSIWYG eystems, window systems, poiniing as input technigue, and a
class of dislogue mechaniams.

4.3.1. Display Formatting

Form filling systems have become quile popular as & user friendly form of interaction, even on
character ferminais. The user Is presented with a form on a screen area that consists of ex-
planaiory information and fleids In which data can be entered and modified. When a form is
brought up, the fiekds Mmay contain detaull values. The user may be required 10 Ml in the felds In
& particular order or Indioate the appropriate order. As the user enters information, the form
systom may rn some consistency checks 10 ensure the comect type of data. in some cases,
consiraints on the value range are also checked.

™ general, the user Indicates thet & form is compieted by lssuing an explick command. In some
{ sysiems, completion of the last fleld indicates completion of the form. in addition 10 being used In
the daia eniry area (0.g., airine reservalion systems), forms systems have been used as com-
mand interfaces for programmers 10 help reduce the complexity of command entry, as in the
Software Productivity FaciRy by 1IBM.

13

AN PR I
¢)

D soventies [127, 37, 48, can be
mmmnmp

A i of 400 TUNaRbg on 1he eNeen i provided Swough Iesmcive document
y mnumuwm&m«-nmhnmn
WO £ N b NS — 45 0 Sk, the EIptyel T 15 usually 4 dpprsednision e
. 4enuns s diapley doraly. Olplay capebiiies of swch systoms inchude filing and justliying
©H L eshiing, wing forts, and miding text and graphics. Examples of such systems
oo Ayt e Yovi Glir {1925 Apis MacWVwMacPalréMacOriw [72, 74], and interLoel

PN Spiteun st & il BN are epioring models of funciional division of formaliing cspe-

Aslibns Sotiioen the qpptntion and 9o user interiase. Meyvowkz and van Dam [79] and Punsa,
munﬂummummmmm
q-i-u

mmm

wwmmumnmwmmw
windows Diffesert appiioations can use dilerent windows 1 Interact with 1he USer CORGUNSRTly.
One appiivalion Gin wee muliiple windows 1 organize the Infermatien &t iends o display. In
contant %5 ‘oiiily peiimerifation with windowing through the use of wuliple displays [$23,
mmmmmhmwmmmmum
M”M&Ot“mm Thiee Yypes of windows are distin-
guisiee: mmmmmummmm
mm-ummmmnmmmwu
mmmmumaummnmnum

Tonmingl emuiation windaws shmuinte the behavior of a charaster termingl, usually & DEC VT100
or an IBM 3270 termingl. The windows may be reposiiionsd on the soreen by the user. Windows
come I» seversl types. The size of the window may be predefined with the same display dimen-
slons as the terminal being emuisted. The size may be fixed (as In AT [B)) or changed by the
user. In the lalier case, the window system adjusts the font size 10 it the display dimensions iInto
the avaliable area[110], shows the display area of the emulited termingl only partially (as In
MacTerminal [79]), or automatioally wraps ines.

Torminal emulation windows have several benefis. For example, they allow programs designed
for character ferminals 10 run on workstations without modiioations 10 the dispiay part of the
application. Also, they allow the window 10 act as & terminal 16 another machine [110}. in case of
. & network conneclion, appropriate Nelwork services must be In piace 1o eetablish connections
: and an network protocols. Thus, the user is able 10 connect 1 differert machines from the same
worksiaion by using multiple ferminal emulstion windows. The disadvantage of terminal emule-
tion is that the capebiiies of bmep displays are not fully uiitzéd.

The second window type, typesaript windows (110, 73], combines properties of hardoopy ter-
mingls with those of CRTe. The display area is assumed 10 extend beyond the vertical dimension

) f'jmabmdnmammum
) "nmdnmhummamau

”ﬂ”h”cﬂmﬂbmhmmh(«m
he) o Sip. Sarpat a8 put 1 the window. Transcripls, however, are not provided without oost;
mgn*unwm.manm For that reason, the
nglh of B0 appeies Sunepit. 1t some. windew sysiems is imited 10 a predefined size. In
oonaral, typsacipt windows ave Bmiled to displaying text.

Tho Siss winilow type, Simap windows, males avaliable the full functionally of & bimap dlsplay.
= gonsral, the application can operale in a viriual area that is larger than the window. The
window aySiom peronms the necessary ciipping, Le., imiis the actual dispiay 1o the window ares.
The window gystem may provide storage for maintaining the content of the window or the virtual
asee. This pinniis the window sysiem 1o relresh the display and, in the latter case, support
soroling over the viriual area without application intervention. The storage cost may be quite high
due 10 storing full bimaps unises More compact representations are employed.

There are hwee basic technigues for ananging Windows on the soreen: overiepping, NONover-
lapping. and ting. Overiapped windows are ke pleces of paper that can be arbirarlly sized and
cover each ather. Tho renult s that the display space provided by the windows may be larger
than the ditglay space of the physical soreen. However, since windows may be (partially)
covered, clipping mechaniems need 1 take this into account. Furthermore, the window system
st maintain the content of the coversd areas in special storage unisss this responsbilty is
passed 1 the application. As the number of windows Inoreases, some windows can become
hidden under others. To acocses a Hidden window, the User may have 10 perform one of several
actions, depending on the system being usect:

o 0loee or shuflie cther windows, as on the Macintosh [130], In Smaltak {461, or on the

Apolo [

© 200008 & by name through menu ssleclion, as in Andrew [110};

© 200009 R by command, as In Esacs [121);

o accessible R by loon, as in Sapphire [96] or Miorosolt Windows [70].

in the nonoveriapped windowing fechnique, windows are always completely visble. New win-
dows oan only be piaced in previously unused screen areas. As a result, the user may have 1
reavange and resize existing windows. & is dificult 10 utiltze all of the avaliable dispiay spece.

The tled window approach difers from nonoveriapping windows in that the screen area is aiways
fully used. In oxder 10 male room for a new window, existing windows are resized and/or
reshaped by the window system. Depending on the piacement aigorithm used, this results in a
high level of activity on the dispiay screen, making R difficull for the user 10 keep track of window
locations.

Various methods exist 10 determine the placement of new windows [110, 70]. They often make R
diMioult for the ueser 10 arrange a set of windows In a certain way. Few window systems allow the

18

: ihmum»mmmmmmummw simiier 10 the

<+ oalion ot & desidup. & ehould 18 possibie for the user 10 set Up several contexts, not all of them
il visiiv- siensiunstioely, st interactively switch between them. An allemative 10 window

.__,.‘..,j’ﬁ,,‘m.“mﬁMhmlmmm[ﬂ&m l'mf

ARoRT R

MMNMWQWNMW Uunmayboabloto
transler ¥ilormetion between windows through cut and paste (delete and inset) operations. For
example, -8 Xerox InterLisp environment a user can copy a piece of Lisp code received
through elecironic mall into the interllep window and execute R[128]. Some systems, e.g.,
Macintosh MaoWrite/MacPaint, support exchange of formatied text and graphics as well as plain
tont. Insuch systems, the underlying applications, ¥ diiferent, must use & COMMON representation
wummuum

4.3.3. Two-Dimensional Input

The two-dimendional display and the abilly 10 refer 10 a random position on the screen (via
keyboard cormmand or pointing device) provide new ways 10 communicate. A variety of physical
Input devices exist. Device-independent graphics packages such as GKS [61], and works such
as Foley and van Dam [41]) and Newman and Sproull [88] use logical input devices 10 achieve
physical device independence. The articles by Foley and van Dam [41] and Newman and
Sproull [88] dlacuss the relationship of logical input devices 0 physical input devices as well as o
diferent interaction technicuies (see aleo section 4.1.4).

One of the more popular pointing devices is the mouse, which can have a number of buttons
commonly ranging from one 10 four. Mouse buttons can be considered special function keys that
suggest execution of functions related 10 the mouse/cursor position. As can be seen from exist-
ing systems, funciions performed by a mouse with multiple keys are often simulated by a one-
bution mouse or keyboard keys. The following set of examples illustrate this point.

Direction can be indicated with a four-bution mouse where the butions act as cursor keys (Perq),
with mouse movernent (MacintosivFrogger), or with cursor keys on the keyboard. Scroling direc-
tion can be indicated with one of two mouse butions (Perq/Pepper), by clicking in the appropriate
area in the scroll bar (Xerox Star), by function keys, or by menu. Selection of more than one item
can be performed by hokiing a mouse bution down. A selection can be extended by using an
sllemate mouse buttion (Xerox Star) or by using a key in addition 10 the mouse button
(Macintosh). An “open” or "activate” operation on an object can be performed by double clicking
(quickly pushing the mouse bution twice (Macitosh, interieaf)), by menu selection (Macintosh,
interieal), or by object selection and invocation of special function keys (Xerox Star). As can be
soen from the examples, In many cases context information such as location or time (as in button
hoid, click, and double olick) is used 10 enable one-button mouse operations. The different

-

mmmMmmbummnwum
mwumnmummnuummm
mbm_,,f tioth the keyboasd and mouse. In the case of Pepper, the functions are bound
10 the Mouss equivelit funciions. Lek versus right handedness needs 1o be considered in such
acase. Oher systems (Macintosh) allow commands to be invoked by function key or by menu.

Unfortunately, systems that support full functionality through function keys and menus are rare.

The applioaiion cursor can be bound 1 the mouse location or decoupled from the mouse (for
example, for text entry). in the first case, the application cursor position (In general, representing
the input poslion) is changed by simple mouss movement. Accidental mouse movement
misplaces the application cursor. In the second case, the application cursor is not affected by
accidental mouss movement, but must be placed by expiick operation, e.g., pushing 8 mouse
button. Simiiarty, the active window (the window receiving the cument input) can be determined
directly by the mouse location ~— potentially causing unintentional window activations — or by
oxpiick operation such as a mouse click. For applications in which the cursor directly tracks the
mouse location (simulation programs), k may be desirable to have the appiication cursor recog-
nize the window boundary as a hard boundary. in this case, a special operation is necessary to
permit window boundary crossing.

Mouse-inwoked operations are ofien sensitive 10 context and location, which provides more
flexibity. Dilferent regions of a window may permit different command sets 10 be called by pop-
up menu. For example, in Andrew [110] the mouse location in a window header refers 10 window
systom commands, whereas spplication commands are avaliable while the cursor is located
wihin a window. Different icons for the mouse cursor give the user feedback about context
changes. The avaliebliity of a menu may depend on the state of the application (e.g., file saving
operations in interieaf [60]). On the Macintosh a diiferent approach is taken for command menus.
Application commandis can be found in a giobal menu set, which resides at a fixed location on the
soreen. The content of the menu set changes according 10 the active window/spplication. Many
window systems support direct invocation of commands In a context-sensiive manner. Relative
posiioning operations such as hortzontal, vertical, and pagewies scrolling, and absolute position-
ing operations such as thumbing (pointing 10 & specific location within a document), sizing, and
motlion of windows are realtzed by making use of location context.

4.3.4. Menu Mechanisms

A menu allows the user 10 select from a standard set of objects or operations. A variety of user
interface foolboxes and user interface management systems provide menu mechanisms with
diterent degrees of functionally [5, 4, 49, 9, 57, 60, 112, 85).

Menus can be visbile permanently or temporasrily. Permanent menus tend to be represented as a

set of buttons, possibly representing the function symbolically. Temporary menus usually are
organized as a row of textually labelled entries. They become visble on top of other windows

17

 User Intertace Technology Survey

under user or appiication control (referred to as pop-up or puli-down). They can appear in a fixed
piace, or near the mouse cursor location. Menu entries can be text or icons or both (all these
forms are found on Macintosh). The size of the menu window can adjust to the number of entries
or can be fixed. There can be an upper Imk on the number of entries, or the menu content can
be scrolied or paged. The set of menus and their contents may be frozen, or they can change at
runtime. A subset of the eniries may be active at any time.

Temporary menus are called up and selections are made in one of several ways. Some systems
display the menu when a mouse button is pressed. While the mouse button is held, the mouse is
tracked for menu entry selection by highlighting. Releasing the mouse button causes the cur-
rently highlighted entry 10 be selected. Release outside the menu window aborts the menu selec-
tion. In the latter case, the invoker of the menu function must be able to handle this exceptional
condition, i.e., no selection. Other systems display a menu upon mouse click or function key
invocation. The user can then select an entry through a separate click operation. invoking a
function key is usually for menus with muRiple selections. Muitiple selections may be indicated by
clicking mutltiple entries and terminating the selection process by an explick “close menu” com-
mand, or by repeatedly calling up the menu and adding 10 the selection. Selected entries are
indicated by a check mark or by highlighting. Sometimes the selection state is remembered be-
tween menu call-ups. It provides a context for extension of selections or defauk selection based
on previous actions. In such a case entries may have to be unselected explichly, or a reset
operation is provided. For menus with state memory, single entry selection can be enforced
thwough so-called radio bution behavior, which means that selection of one entry removes a
previous selection. -

Menu entries may be grouped and organized into menu hisrarchies. Al levels of a hierarchy may
be visbie at once, or they may have 10 be navigated with only the selected path visble. In some
systems, a special eniry in the top level menu permits the previous selection 10 be repeated
[110, 60). This may be carried out by immediate reselection of the final entry or by time delayed
walkking through the menu hierarchy.

Menu selection may be in response to a question or a message. The text may appear separately
or fogether with the menu entries in a so-called dialogue or alert window [5] — aiso referred to as
prompters and confirmers [49]. For ranges of numerical values, selection can take a different
form such that the set of discrete values is mapped onto dials of various shapes and forms. The
user can seslect/set a value by abeolute reference or change it relative to a given value. The user
may interact with a window that combines the above selection mechanisms with fieids for text
ontry.

Because the muliplicity of alternatives is overwheiming, there is a need to classify the tech-
niques. The techniques have to be appropriately mapped to the interaction tasks to be performed
by the user. The Descartes Project [113] examined the menu as an example technique and used
sultable abstractions for interactive communication to determine the role of menus in dialogues.
in the process, a design space was determined that explains the variety in menus. A more gen-
eral treatment of interaction tasks and techniques is presented in Foley, Wallace, and Chan [42].

bivhdiion Tasks and Techniques

ragnitiin Siskd provide & user-oriented classifoation rather than the sysiem-oriented classi-
oation of legioal devices. Interaction tasks are primitive action units performed by users. They
form buliding Bibcks for complex interaction tasks and complste interaction disiogues such as
~ those 10und In user interface toolidis, ¢.g., the Maciniosh toolkk {51, and user interface manage-
rnent systoms [132].

Foley et al. [42] define six types of interaction tasks:
1. Seleclion — choosing from a set of allematives, ¢.g., by menu or abbreviated name

zm—MammﬂhthaMbmm

3. Ovienting — specilying an entity’s direction, ¢.g., by rotation;
4.m—-amamuumm-amm;
&_W—m.thaMW)MwMM
6. Text — entry can be carried out by typing, or by character or word selection from a
menu.
mmmmmmamm.u..mmmmmmz
1.:@n—mwum~mmummm

2. Sketching — freshand drawing with the localor acting as a brush or pen;

3. Manipuiating — moving objects, ¢.9., piacing them in new positions on the screen
(also known as dragging) or scaling an object;

4. Shaping — changing the shape of a smooth curved ine or surface.

Constraints can be applied 10 both interaction and control tasks. One common form of conetraint
appiled 10 orlentation, path, and streich tasks results In enforcing horizontalvertical lines or
circies. Grid and gravity are two forms of constraints that affect positioning and other tasks that
maike use of positioning.

Each of the tasks is carried out by interaction techniques. Examples of selection techniques are
menus or command typing. For each technique, pararneters provide further distinctions. For
example, a menu is a selection technique. Menus can be hierarchical, entries can be ordered, or
defaull selections can be provided for menus. Menus can pop up or be pulled down; they can
appear in fixed places or close 10 the cursor. '

19

4.4. Graphical Communication

The August 1986 lesue of /EEE Computer was dedicated 10 visual programming, i.e., the use of
graphics in the context of programming. Grafion and ichikawa [51] define the term and survey
work in the area. A second article by Raeder [98] surveys current graphical programming tech-
nicques and compares various graphical programming sysiems.

Graphics capabilities permit new forms of communication, of which we consider four types: iconic,
graphical viewing, graphical programming, and animation. In addition, the user may communicate
10 the systern texiually while the system produces graphical representations. In this case, the
user is provided with a command language with graphical operators. An example is PIC, a lan-
guage for drawing simple figures [67). Drawings speciied in PIC are fed through a document
processor (Troff) and can be viewed as printout or on a workstation screen. Other examples are

extensions o programming languages 10 include graphical operations [135, 81, 108].

iconics refers 10 the faciity for attaching a symboiic representation 10 an object or entity. Xerox
Star and Macintosh are good exampies of an iconized user interface. icons may be defined for
each object or for classes of objects. In the latter case, a name may be included in the icon to
distinguish members of a class. icons act much iike menu eniries in that they are selectable.
Some menu systems support an iconic representation of their entries (e.g., Macintosh). When
created, icons are placed by the system or by the user. Users may place icons in arblirary loca-
tions (Macintosh), or into a predefined grid (MS-WIN). Some systems provide an operation that
organizes icons into grids and eliminates gaps (0.9., the Macintosh clean-up operation).

Movement of icons may have different semantic meanings depending on the destination location.
Within certain regions, R may just relocate the physical dispiay object. in other cases, t may
move or copy the underlying object. On the Macintosh, for example, files are moved by moving
an icon from one folder (directory) 1o another, but files are copied by moving the icon 1o a folder
on a different disk. Moving an icon on op of a trashcan icon deletes the underlying object
(Macintosh), and moving an icon onto a printer icon prints the underlying file object. Printing on
the Macintosh and deleting on the Xerox Star are executed by elher function key or menu.

Some systems permit the user 10 define iconic symbols and attach them 10 existing or user-

created objects. Such systems are user exiensbie. An interesting example of an extensbie appli-
cation with an iconic user interface is Fllevision, a visual database, on the Macintosh [83).

iconic representations are aitractive because they permit the application implementor to present
1o the user a view that more closely reflects his mental model of the application. However, & is
difficukt to appropriately apply this technique and generate a semantically consistent user inter-
face behavior. This is Bustrated with an example on the Xerox Star. lcons (and the objects they
represent) can be moved and copied. Moving means removal from the source location. However,
¥ the destination is the printer, the move operation is transiated into a copy operation to avoid an
unintentional deletion of the icon (object). Such action makes the user ingecure because he is not
sure when such a reinterpretation takes place. Alternatively, the system could prohibk the opera-
tion or ask for confirmation as & protective measure. Graphic functionality of a display permits

graphical viewing of various classes of information. One class that can be viewed effectively is
quaniRalive information such as business graphics. Such representations for numerical data,
including ber chars, pie charts, and histograms, are highly effective for summarizing large
amounts of data and their relations.

Graphical representations of structures are aiso effective for describing the complex interdeper-
dencies in the struchure and at diferent levels of abstraction. Graphical representations also can
be used as a'basis for navigation. The effeciiveness of graphical representation is apparent from
the popularity of graphical techniques in requirements, specifications, and design methods, where
dala struclures, data flow, and oontrol flow can be represented graphically
[122, 107, 128, 86, 117]. To date, a number of inleractive systems have been built 10 support
graphical viewing and navigation through program code and documentation in software devel-
opment (PV [16], PECAN [104]), program data structures in debugging [128, 84], and directory
structures (Perq [119)).

Graphical programming uses the abilty 10 arrange graphical symbols and interconnect them to
create a graphical representation, or view, of a program. Such a graphical representation is
expected 1o have well-defined syntax and semantics and is transiated into other representations.
in this respect, graphical programming s similar to computer-aided design (CAD). In an inter-
active system, the user is informed of inconsistencies during entry of the structures. The inter-
active approach gives the user more immediate feedback and can aid in determining appropriate
connections (e.g., PECAN [104]). In more common systems, the user enters the structures with a
graphics edior, and the consistency of the structures is checked by invoking a separate tool (e.g.,
DesignAid [30] for data flow diagrams). The capabiities of a graphical programming editor in-
clude basic operations as well as elastic connections, layout cleanup of objects and connections,
grouping of objects, and hierarchical organization of the graphic structure.

Animation is the ability fo show changes over time. Graphical animation can show such progress
over time effectively. One way is to visualize the time axis and generate a time plot of values.
Another way is to animate the change Rsel¥ in slow motion such that the user's eye can perceinve
the change. Animation can be used effectively to Bustrate the actions of a program, thus helping
the user to understand and “feel” the actions of an aigorithm, and to recognize bugs and logical
inconsistencies by demonstrating changes to data structures or progress in control fiow [16, 71].
Animation has aiso been used fo monltor performance, such as network traffic and program
execution profiles. Finally, animation is a ool for visually displaying the execution of simulation
models.

Graphical simulation has been common practice in the artificial intefigence community for job-
shop type simulations and is available in product form (e.g., Knowledge Engineering Environment
(KEE) from Inteflicorp, Knowledge Craft from Camegie Group Inc.). Though graphical simulation
is not yet an established 100! in software engineering, it Is starting to raise interest in areas such
as modeling telecommunication applications [78]. Functions expected in the user interface for an
animation 00l include controis iké those on video recorders for display speed, and reverse
animation where possbie. Other functions will permit the user to Initialize the
animation/simulation environment and change it while animation is suspended.

21

" N L by
P ."":l o et L~'f,.f1“.'cu'n —'v.‘,"-".\ Ty .-,i,".ﬂ "l A ‘5’ ".' ‘i’.‘!', (M Q‘c' ‘I‘. \",' 6’s l'('.\‘ "O.." [& !

LG U

B Mhmmmmm They are the
o wmmmummmnmwmm
.mm:mmm

e ol "mwmwmammmwmmm

miimmwwmw[ﬂa.m“ma&wmm
mmﬁm.%a%mnmmmm»mm They
mmmmmmmmmwmmmm«m printers,
uam«uuwmmmmmmmma
mmammmamwam A user can potentially have
more than one desidop defined and allemate between them, which is similar to the way people
alomda n physical work environments in the course of & normal workday.

ummbmnnusymwm:n mmrwm(mmMMused
mmmnm)wmmmmm«mum»mxm

' &unumma This heips 10 make the system leamable, but kmits effective use of R by some
user groups such as. keyboard-orlented users. Some systems (Apple Macintosh) [138] provide
Wmmmammwm These are not easily
WWMWMGWW such as background execution of
meMdmﬂmamm often seem 0 be
ignored for the sake of this "new” technology. Such features are sometimes desirs - . for sophis-
ticated users to enhance the user interface of an application.

User talloring or profiling is the abillty of the user 1o adapt the user interface of applications to his
set to determine certain aspecis of the interaction. Examples of parameters are keybinding of
functions, diferent modes indicating forms of mouse tracking or editing (e.g., explick vs. implicit
insert mode In EMACS), or preference for menu driven interaction vs. function key interaction.
Some capabiities enabled by parameters can be used 1o simulate user interface concepts that
may not be supported directly. For example, the abilty to specily a script indicating a set of
windows and appiications to be started when logging into the system can have the effect of a
desktop to a imied degree.

User tailoring raises several questions, for example, what is the desired degree of tailoring? The

Xorox Star system supports only minimal variations. On the other hand, the UNIX system pro-

vides a large degree of freedom. Tailloring is in potential conflict with uniformity and portability of

users. &t permits one user to tallor the environment to his needs, but makes & hard to interact with

. other users about the use of the system and provide general help. Talloring is used to overcome

' shortcomings (as perceived by the user) in the application’s user interface. Is this the right
solution to overcome these problems?

The nolion of browsing has been promoted by a variety of groups (e.9., ZOG information network
(43, 44], document browsing [140], the Magple Pascal envionment[111]). SmaRak

b4 an efective way 10 use e bimap display for Quickly browsing Swough
mmmumwmunmmm
DWelr A i presontad with & root into & hieraschy 6r network. From this 100t the User can
mumm»nmcu The selecied enilly and s links are dispiayed In a sepe-
mm»umhammnmauummm
, for’ ipth hierarchiss and network siructures, the selected path can be
m&ammmhammunuummnw
. mmuMm. o

: mmmnunmpmmmmmm
difierent angies. This nolion of rulliple views has baen common It database systems for some
time (1], arws more recently it intévaciive: business graphics and documentation systems [60] that
allow the user 10 have dilferent graphical views of & set of data. Such data represenialions may
uwm in some Cases, the user may modily information in more than one of
nmwmmwwmnnmm MaoProject and Jaxz

for the Maciniosh are axamples where multible views are maintained simultansously by the sys-

tem. in the jogramming Sree, WO examples are ayniax-directed ecliors and PECAN. Syniax-
mmmmmmuummm
Mmammmm-uMbnmmwm
mmmwmnnmmmm of
mmmmmm»mmmm

Mmmmmmm The window systera Andrew
[110], running Berkeley 4.2 Unix on Sun and DEC Microvax workstations, permiis windows 10 be
sttached 10 processes on ofher machines. This aliows the user 10 Interact with shells (system
command interpreters) as well as with appiications on dilerent machines In the same way he
would on the local machine. The user can move or copy text within a window or between win-
dows. Text produced as oulput in a window on one machine is easlly copled thwough aut and
paste 10 a shell window on a diferent machine and executed as a command. The user intertace
system provides all the necessary functionality such that the applications are not aware of the
network.

User interface Teohnology Survey CMU/SEL87-TR-6

5. Human Factors

ARhough technology-driven development produces powerful systems, such systems tend to con-
tain numevous “gadgets” that may not provide the most effective means of interaction for a partic-
uler application or user. For example, menu fechnology for command invocation may increase
the effectivensss of some users, yet decrease the eflectivensss of other users. For a typist
concerned only with text entry, efficiency is severely handicapped ¥ certain functions, such as
type style selection, can only be done by menu. Thus, the maich among technology, application,
and user is critical 10 the overall effectivensss of the system.

The term ergonomics has been given 10 research that studies work and working environments.
Ergonomics stresses the central role of human physiology in the design of equipment and
workplaces. The considerations include design features of the individual workspece, the type of
work the individual is expected 10 perform, and the methods by which the work is most efficiently
executed.

Human faclors engineering is closely related 1o ergonomics. it is a fleld of engineering practice
that offers both practical design guidelines and evaluation methodologies that help computer
designers with their products. R focuses on the user aspects of human-computer interaction. It
directly applies knowledge and methods that have been derived from the human sciences such
as psychology, physiology, and the arts. its working knowledge is enviched by the more informal
and subjective knowledge of practical experience from people who design, bulld, and use sys-
toms.

Card, Moran, and Newell, members of the Applied Information Processing-Psychology Project at
Xerox Parc, were pioneers in applying methods and insights from cognitive peychology to the
practical design of computers [26]. The range of human psychology activities spans perception,
performance, memory, learning, problem solving, and psycholinguistics. Card et al. envision sub-
flelds in the application of human peychology to information processing such as user sciences,
cognitive ergonomics, sofiware psychology, cognitive engineering, and artificial psycholinguistics.
The Technology identification and Assessment Project drew on work from the human factors area
that deals directly with user interfaces. For information regarding leaming and problem solving,
references are given for the reievant Rerature.

A varisty of introductory and survey materials are available covering various aspects of human
factors. Burch [17] provides a recommended reading list on computer ergonomics and user
friendly design. Ramsey [99], Card et al. [26], and Shneiderman [115] provide extensive reviews
of psychology in human factors engineering. A more recent kterature list of the field is available
in the SIGCH! Bulletin [63] and as part of an article by Foley et al. [42]. The field has aiso
received attention through a series of workshops and conferences organized by various profes-
sional organizations such as ACM SIGCHI, the Human Factors Soclety, and the IFIP working
group 6.3. ‘

The remainder of this section on human factors is structured as follows. First, different models of
the human aspect in the interaction process are discussed. Then, methods and experimental

mmmmnmm and measure different aspects of human-
mmmmmmmmmmmmm
ostegorzed, WS PIPUEES & refineiient for each of the classifications. Both classificaions were
developed from a linguage-oriented view of the human-compuler dialogue. The first classifi-
mmmhmw;mam,m«mmmmm
Moran [80], ¥ies 10 addrees the device level of communication in more detall. R divides the
Mmﬂummmﬂdqmwtﬂaoﬂmﬁcm:
Mmmaawwmmmwwam
component compossd of & spallel Jevel and a device jevel. Buxion proposes a refinement of
mmnmuww»mmmmmma&
logue.

muammawmmumn«mﬂ. They describe
the model of a human processor as consisting of a percepiual system, a motor gystem, and a
cognitve system. Human performance is determined by perception (reading rate), motor skill
(key layout and typing efticiency), mmmmm).wbmw
retrieval (memory of acquired information).

Card ot al. also developed a model 10 study the interaction process between humans and com-
puters. The model, called GOMS, consists of goals, operaiors, methods for achieving the goals,
and seleciion rules for choosing among competing methods. They use this model 10 analyze the
humean-computer ineraction process for the appiication domain of text editing.

Norman [80] proposss a similar division of the process into four stages: intention, selection,
execution, and evaluation. Intention reflects a set of goals in the user's mental model. Selection
is the mental selection of actions or methods for achiéving the goal. Execution Is the physical act
of entering information info the computer. Evaluation is the examination of the feedback as part
of the resuk of execution 1o determine further activity in the process. Norman analyzes the four
stages 1 determine the need for different support at different times in an interactive session. He
points out that each interaction dechnique provides & set of trade-offs. The choice among the
trade-offs depends on the technology used, the class of users, and the goals of the design. The
choice has 10 be made with a giobal perspective, because the optimal choice for one stage may
not be optimal for another.

Riley’s work [105] elaborates on the intentional stage of the above model. Formulating the inten-
tion and making a selection requires knowledge of the actions available from the system, and
planning for achieving the desired goais. Riley suggests that a planning framework is useful as a

S S
A n

" TMMhmmnmmmmmmmum
~ otuser. For example, sase of leaming is more important for & novice user than performance tme.
~ In general, the user ieriace should reflect the user's conceptual model of his task as close as

 poselble; Often, iowever, the user Inerfios le provided s an aterthough, and the funclionally

otumntuﬁnwnmefhwmmmmmm
modal.

mmhmunwmawwmmmm
the design of display terminals regarding such Rems as dispiay contrast, refresh rate, character
size and shape, and acreen orientation. Ergonomic standards exist in Europe for display ter-
MNNMW“MmmWhhw For a
discussion of the full specirum of issues, the reader is referred 1o Caldr, Hart, and Stewart [23).

mmqmmmmmmu.mm and user
mm As he points out, the results indicate that productivity increases with decrease in
response time. Emor rales Increase with response times that are 100 short or t0o long. In a
system-guided disiogue, very short response times seem 10 pressure the novice user into ac-
tions. Vary long responss tmies disrupt the user's attention. Experienced users try to adapt 10 the
mdmmmwmumﬂmmrmmmw

Reisner [103] reports on an emplrical study of query languages. in this study he defines a meas-
ure of learnabity and ease-of-use. Based on the results he provides feedback for query language
design. in addition, the report comments on methods for evaluating human factors and tries to
show the reader how 10 interpret the resuils of such studies.

Embley and Nagy [35] review work on text editing and input/output techniques. Under controlled

oo b mamhnmnmmummm
_‘ mﬁmﬂnhm“mmmm-mmm
\ mu”munmmnmmmm Ewor detection
and comestion can acount for up 10 50% of the task time.

. 'Amdmmmmmmmwmmm
nmmuqmmmmammmmmm
mummumwmmumu
lexioal, pragmatic, and syniacic parminsters of techniques on the ease of performing a particular

Periman [94] examined the menu fechnique through an empirical study and derived some aids for
low-lovel implementation decisions such as menu size, ordering of menu entries, and form of
entry selection. Card, Pavel, and Farvell [27] examine windowing techniques, L.e., what features
of windows are impostant for design of a user intertace, and their benefits 10 users. The concept
of & window working set (similar 1o the working set concept in operating systems) is introduced for
addressing the problem of space consivainis on window use. Gal [46] discusses the issue of
window shapes. He cbesrves that a collection of windows on a screen are sesthelically more
mluwuummnmmu.mw Le., a trlangle
with Euclic’s golden ralio.

in summary, there is considerable understanding of the basic perceptual requirements of dis-
plays. However, there is Rt systematic understanding of the interaction between display and
the user’s abilly to perform a cognitive task. '

5.3. Pictorial Representations

The form in which information is represented strongly affects the time R takes for the human mind
10 process R. R Is commonly acospled thet human visual orientation aliows us 10 process visual
information in diferent ways. As Rasder [98) points out, vision allows instant random access %0
any part of a picture, providing detalled and overall views; text, however, is scanned sequentially.
Plotorial representation provides more dimensions according 10 which information can be laid out.
Text is basically a one-dimensional stream of characters, augmented by formatting (such as
paragraphs) and font changes (8.g., boid or Ralics). Pictures support three dimensions that can
be augmented with properties such as shape, size, color, texiure, direction, and distance. Be-
cause of the richer pictorial language, information can be encoded more compactly. The transfer
rate of information by pictures is generally higher as the human eye is set up for real-time image
processing. Pictures that iIncorporate real world objects can simplity understanding of abetract
ideas. The pictorial representation aliows us 10 refer 10 objects directly. in textual representation
cbjects can only be referred o indirectly through names, 80 dependencies are less easlly com-
municaled. Piciures can represent the real world, thus making the representation more natural to
the user. Animation of pictures, ¢.g., dials or plots, can reflect changes over time more easlly than
changing fextual repressntations.

Piolures can be metamorphically enviched by making use of the additiona! dimensions of the

User interface Technology Survey CMU/SEL-87-TR-8

pictorial language. As McCleary discusees, [76]. size, value, direction, texiure, shape, and color
provide six variables acconding 1 which graphical symbois can be ciassified. Permutations and
combinations of these variables provide for a large graphical vocabulary.

The appropriste symbolzation of information, Le., transiation of textual and numerical information
into graphical form, is a task in which graphic artists and Bustirators have extensive experience.
As TuRe shows [133], graphics can be an effective way to describe, expiore, and summarize sets
of data. However, graphics can easlly be misused to produce what he calls chart junk. Tute gives
some guidelines for excellent statistical graphics. In his words, graphics can be more precise and
revealing than stalistical computation, and communicate complex ideas clearty, precisely, and
efficiently.

5.4. Design Principles

The design principies summarized in this section have several sources: authors such as New-
man and Sproull [88], Foley and van Dam [41], Good [50], and those summarized in Shneider-
man [115]); a questionnaire-based study [33]; and the cognitiven psychology reaim [26). Despite
the diversily of sources, there is considerable agreement on the principles. Some apparent con-
tradictions among principles occur because the criteria summaries do not clearly differentiate
between classes of users. Examples include request for redundancy in the command set, and
system vs. user control over the dialogue. The design criteria are grouped as follows:

o Know the user — adapt to the user’s capabilities; adapt wordiness of both input and

output 10 the users needs; allow choice of entry pattems; provide shortcuts for
knowiedgeable user; provide guidance when desired; use the user's model for the
problem domain.

o Consider personal worth of the user — leave action initiation and (e.g., abor-

tion of command) o the user; allow the user 10 decide on dialogue technique
tallor the dialogue pattern; give quick and meaningful feedback on state
progress of interaction and execution; do not require the user 1o supply information
that is already available; maintain a well-balanced social element in the dialogue.

e Reduce leaming — provide consistency and clear wording; reduce modallty; main-
fain unfonmity and homogenelty; avoid overioading of commands; provide seif-
explanatory commands and help when requested or needed.

» Engineer for errors — provide consistency and uniformity; handie all possible input
combinations; provide good eror messages; eliminate common errors; provide pro-
tection from costly errors; provide support for correction of errors; provide context-
sensitive online assistance.

o Know the application — present a natural image of the application system; provide
problem-oriented powerful commands; carry forward a representation of the users
knowiedge base about the application’s problem domain.

ad

Card et al. [26] and Buxton [18] consider the time component (the expected performance
requirements) to be an additional design criteria. Card et al. further propagate a set of principal
steps that should be followed 1o achieve good user interface design:

1. Set goals 10 be met (performance requirements, target user population, problem
and user-oriented definition of tasks),

., 4 '. IR ! d ; LK% P » [™ " % 7 "
RS ARSDA O ORONOUNOTLEY ORI R L D OO IO A A KO0 X O N (o SR A XA i) ROt

MGMOm&Dmuh ummwm
th

M“M“Mb“wmmm There is a need
for mise clijosiive moasums %o determine the quality of user interface designs iwough evalu-
oo u*mnwuwwawmm-mn
mmuamnmmm(mmm

User interiace Technology Survey

6. Implementation Considerations

This section discusses user interfaces from the view of the application implementor, who can be
faced with quite a different interface from the user interface system. A user interface system may
be easy 10 use, but hard 10 interface with an application program. The interface may provide
imited functionailty, functionality not appropriate for the application, or a certain interface style,
which would not allow the implementor 10 specily his own style. The following examines how
‘application user interfaces have been implemented.

in the simpiest form, the application programmer uses /O routines provided by the programming
language or by a subroutine ibrary. Often these faciiities handie specific input and output devices
or device classes (separate routines for terminal and file 1VO) and dilferent calling parameters for
different terminais. This results in device-dependent appiications that are difficukt to port. Device-
independent /O modeis make applications more portable. Exampies of such models include
uniform file and device VO in Unix, virtual device interfaces such as the Unix curses and termcap
faciiity, and standard Bbrary routines for input processing such as the Unix library routines for text
input handling. Increases in sophistication of user interface functionallty results in more complex
software. Since a considerable part of an application represents user interface code, and en-
hancements 10 software, there is a desire to localize the user interface code, to share and reuse
the code across applications, and provide higher-level functionality by predefined user interface
packages.

The term user interface management system (UIMS) has been coined [66, 132] for tools that
assist in the development of good interactive application systems. The appilication developer ex-
pects benefits from a UIMS [18, 125, 58] such as:

« device independence of the application,

o reduction in programming effort,

* reuse for several applications resulting in more consistency, and

-ggwrmmmmmmypwwmmammmummanw

n.

The UIMS is expected to provide functionality at the appropriate level to model effectively the
user's view of the application without imposing preconceived policies on the form of dialogue.
Further, it is expected fo be decoupled from the appiication to permit tafloring of the dialogue
without affecting the appiication part, while still maintaining a correct and consistent display of the
application and s state.

The following section discusses architectural models of user interface software, examines tools
for developing user interfaces, and elaborates on the desire for portability and the necessary
standardization efforts.

o - e o [oR {Rcaaa= e TN RS I sl e S

'nmm

m mmmummwuwuemumm
i . and are summertoad In this section. - Each of the models addresses a different aspect of
e uoer isdiace architeciure. The first model presents a set of virtual machines that provide
’ MMMMMMmmmmhm The
secand mogsl capuses fives diierent control architectures. The third model tries 10 capture the
muummam«wm Proposals have been made to com-
penssiy for deficiencies In the lalter madel. -

One model inwocuoss & umbmmmquum
ioad dovipe and of from the application. These levels of abstraction are the logica/
E- . devie, e vinus/ fermingl, the extemal view, and the dialogue socket [26).

* The logical devios level insures device independence. Two examples of logical de-

vios Interdaces, the Unix curses and termcap faclity [134] and the GKS standard
! interiace u:mmhmdo.:mmt logluddfv.:;cm
‘ dute & hisraschy Borulika, Kuhimann, and ten Hagen [15] introduces the notion

7 * The dialogue socket contributes 10 the dialogue-independence of an application. It
provides a high-level interface between the application and the user interface, allow-
ing for a decoupiing of user interface and application development.

The interaction between the application and the user interface is described in a second model,
the control architeclure model. Three kinds of control architecture can be identifled: intemnal,
external, and mixed [125).

« In the internal control model, the application is in charge of the flow of control. By
caling on functions in the user interface, & determines the flow of the dialogue.

¢ The extemal control model takes the inverse view, and the application is provided as
& set of functional units, which the user interface system invokes in response 10 user
interactions. Hence the user or user interface is in control of the dialogue sequence.

o The mixed control model supports concurment execution of the application and the
user interface in separaie processes. They communicate through a message sys-
tem. The user intertace must handie two asynchronous interfaces: the end
user and the appiication. a model provides more flexibility in that k can deal
with user or application-generated events that are not past of the main flow of dia-

User intertace Technology Survey CMU/SEL87-TR-8

The composttion of an application dialogue from available building blocks can be formalty specl-
fied. In a language-oriented view [42, 20], several aspects of the interaction dialogue have to be
considered:. pragmatics, lexical elements, syntax, and semantics. Different formalisms are most
appropriate for each of these aspects. This architectural model has some shortcomings, in that it
does not clearly address issues of two-dimensional and graphical display, and issues regarding
the interaction between user input and feedback of the system. Shaw et al. [113] refer fo the
capluring of this interplay between input and output as prosody. They point out that attention
must be paid to the way decisions are made about format and prosody. By localizing this infor-
mation, policy decisions regarding the layout can be defined in a database, and style definitions
can provide initial choices (an idea already present in the Scribe text formatting system [102]).

Shaw [114] presents a new model for input/output that overcomes the deficiencies of the classical
language-oriented model. Her model suggests a software organization that supports handling of
application-defined data abstractions, composition and maintenance of a display image, and
processing of appiication and user events.

6.2. Development Tools

Tools for developing user interface software come in two categories: software building blocks
and languages. Buliding blocks are made avalilable in the form of toolboxes or in the form of
mmrﬁonmm.unwamoﬂdhmolmdpmmmwwwsmmnoﬁ
the interface between the application and the user interface, and in the form of specification
languages for user interface designers 1 define the appearance and behavior of the user inter-
face. Each of these categories will be treated in tum in the next two sections.

6.2.1. Toolboxes and Generation Systems

Tanner and Buxton [125] discuss an evolving model of user interface management, i.e., the com-
bination of the process of building a user interface and the runtime architecture of the user inter-
face. They introduce the terms module builders and glue systems to refer to toolboxes and gener-
ation systems.

Toolboxes provide a library of building blocks from which a user interface can be manutactured.
The user interface builder may be provided with toois 1o enhance the building block set, e.g., icon
and font editor to add application specific symbols. The building blocks may provide different
levels of functionality. The Macintosh Toolbox [5] and Microsoft Windows [70] are two examples
of toolboxes from which the builder will pick building blocks and assemble them to form the
preferred user interface. Certain aspects of the intertace are predefined, e.g., the placement of a
menu; others are in the control of the builder. In contrast, Andrew [110] is an example of a toolbox
that provides a very high level interface and imposes built-in policies for the user interface ap-
pearance and behavior.

User interface generation systems allow the builder to formally specify the appearance and be-
havior of the user interface. This specification is then processed; the use of appropriate building
blocks to achieve the effect is determined; and the information is deposited in a knowledge base.

.mmmaummmmmwmuw
base and eicecuting the ibrary routings. Examples of such generation sysiems are products such
a8 Apolio/Disiog (4], and research systems such as Tiger [66] and Cousin [58]. Some generation
mmmunwmummwammumm
mw(c.g..mn«]m Menulay [21]). The interactive specification of the user inter-
mmummummmmwmmmmm
profotyping. ' Descriptions and comparisons of-several user interface management systems can
ummm«ummm«um

& is interesting 10 note that syntax-directed ediior systems have gone through a similar evolution.
There are handcrafted systems [127], systems generated from formal descriptions [77], and sys-
tems tallored 0 rapid prototyping by providing interactive specification and direct interpretation of
the same {38]. They can be considered user inlerface management systems [38] with limiations
in that they usually do not provide functionailly for arbitrary positioning and graphical output.

issues 10 be addressed are the separation of policy and mechanism [113], the inclusion of design
guidelines as a knowiedge base into the user interface generation system, and the abiity to
include new fechnologies and techniques such as speech input [141] and color into user intertace
systems. The separation of mechaniem and policy will shed some light on the appropriate
paramelerization (ueer talioring) of the user interface. Embedding design guidelines into the
generalion system recuires a formalizalion of these guidelines and principles. Based on these
guidelines and appropriate iInput from the application designer, the system gensrates a user Inter-
face. in the area of business graphics, an atlempt has been made 10 capiure such information
into the system [47]. Rather than the user selecting presentation mechanisms, such as plecharts,
histograms, and choice of color, the user specifies 10 the system the effect 10 be achieved by the
presentation; that Is, whether a trend analysis is intended, or the data is to be compered in
absolute or relative terms. Based on the answers and the type of data, the system automatically
determines an appropriate presentation.

6.2.2. Languages

Language support falls into two categories: programming languages and specification languages.
Programming languages have been extended 10 provide more than the classical support [114].
Examples of such work are PS-Aigo! [81], extension of Pascal [68], Screen Rigel [108], and Taxis
- [86]. Extensions include predefined types that are spécific 10 the user inferface and language
constructs for camying out user interface operations. The aRernative to language extensions is
the provision of a subroutine lbrary. Work has aiso been done to define interfaces to graphics
systems in a language-independent manner [120], and to automatically generate language-
speciic interiaces and the necessary support routines for message-oriented procedure calls
[100, 4].

A range of formal specification languages have been empioyed in specifying the appearance and
behavior of user interfaces. Some are appiications of existing notations with extensions; others
are special purpose languages. Their purpose is to capture the syntactic nature, the format, and
the control flow. Green’s thesis [53] surveys different graph-based, grammar-based, and al-
gebraic specification techniques. Extended forms of the Backus-Naur Form [13, 91, 56] and

1
:
-

User imterface Technology Survey CMU/SEI-87-TR-8

variations [32, 77] have been used. State ransition diagrams and augmented transition networks
have been employed |93, 62, 138, 64]. Petrinets and other graphical specification techniques are
attractive candidates. Chi [28] compares and evaluaies four axiomatic approaches for formally
specilying the semantics of user interfaces. Bass [11] discusses a theory of grouping and a sys-
fem that supports formal user specification of form-based user interfaces according to this theory.
Special purpose languages are taliored 10 the needs of the application area such as languages
for description of office information environments [34], or languages for specifying pictures [135].
Languages have been designed that are based on siate transitions, yet include other aspects
such as layout as well [53, 113]. Finally, languages exist for defining data representations and
views on them in databases [1], syntax editors [77], and language systems [87].

6.3. Portabllity and Standards

‘Compatibility of systems is a desirable altribute because R permits integration and porting with

ittle or no cost. Since software costs are a major factor in system development, compatibilty is
important 10 user interface technology. Compatibility is achieved through common agreement 0
public interfaces. This can happen informally by a large population accepiing someone’s interface
(defacto standards), or by an authority documenting, publishing, and promoting an interface stan-
dard. Organizations such as 1ISO, CCITT, NBS, ANSI, IEEE, ACM, and the DoD are active in
promoting standards reiated to user interface technology. The remainder of this section dis-
cusses dilferent dimensions of portability and highlights some of the official and defacto stan-
dards. ’

6.3.1. Portability

Portability can be viewed from many angles: portabiity of users and of software; or portability
across ditferent operating systems, devices, machines, and languages. Users portabillty is a
prominent aspect in user interface technology. As the interaction style and the command fan-
guage differ from application to appiication and system {0 system, users are constantly in the
process of leaming new ways of communication (lower of Babel). This process can be made
easier ¥ uniformity and consistency exist. Through reuse, user interface management systems
can contrbute by providing a consistent set of vocabulary and gestures. This, however, confiicts
with the user interface designer's attempt to present a conceptual view of the application that is
close o the user's mental model of the application and makes the interaction more natural and
leamable.

Portabilty of languages has two aspects. One aspect is support for an interface between the user
interface system and the application such that applications can be written in different program-
ming languages. MuRiple language support can be provided in several ways. One approach is
taken by VAX/VMS and Apolio/DOMAIN where all languages share a runtime environment, and
interianguage calls are supported. LimRations, however, may exist in some languages in the
support of data abstraction and event processing. Another approach makes use of the property
that the application and the user interface run in separate processes. The message protocol or
remote procedure call mechanism, if defined appropriately, can interconnect processes running
diWferent language systems [101]. A second aspect of language portability is support for multiple

User interface Technology Survey CMU/SEI-87-TR-6

natural languages. As shown in the Macintosh product, all dialogue text can be kept in a data-
base separate from the appiication code. However, the situation has to be considered for several
people with different natural languages using the same machine.

User intertaces and applications are usually dependent on the operating system. For example,
the Macintosh Toolkt and Microsoft's Windows were designed for and implemented on single
process operating systems. Design decisions inhbit those user interface systems from being
easily made avallable on other operating systems. Multiple process architectures for user inter-
faces make use of message systems and remote procedure call mechanisms.

Portability across input and output devices has been handled by defining virtual interfaces.
Device-specific knowledge is hidden in the implementation of the interface. Examples are the
GKS logical devices for graphicalbitmap displays, and the Unix file VO interface and
cursesftermcap package for character terminals. By buiiding on such virtual interfaces, large por-
tions of the user interface system can be kept device independent. This ger.eral statement is true
for devices within a device class. However, the functionallly of devices in one class may not be
sufficient to simuiate the functionailty of devices in another class. Therefore, the user interface
design may have 10 be adapted for different device classes. With an appropriate user interface
management system, this information can be localized in the user interface specification. The
application does not have to be affected.

Porting of applications 10 other machines includes adaptation of the user interface. This can be
accomplished in two ways: by keeping the user interface system portable; or by defining a stan-
dard interface between the application and the user interface that is implemented by different
user interface systems on different machines. In a network environment, a third akemative is
possbie. Access 10 an application from another machine can be provided without a port of both
user interface and application. In the mixed control model, the user interface and the application
are partitioned into separate processes. Network-wide interprocess communication or remote
procedure call service makes a distributed setup possible. Other partitions, such as at a virtual
device level, can also be envisioned. The network bandwidth will determine the effective
feasbility of different distribution scenarios.

An interesting special case of porting application between devices or user interface systems is
the interconnection of applications, i.e., driving one appiication from another. Most interactive
applications cannot be executed from another program, whether user program or batch proc-
essing program, due to i strictions in the operating and runtime system. Even on operating sys-
tems that encourage coupling of appiications, such as UNix, this is not always possible because
the appiication has embedded knowiedge about conversing with an interactive device.

6.3.2. Official Standards

Official standards are most prevaient at the device level. Only a few efforts exist at more abstract
leveis of the user interface.

Character sets are encoded in ANSI's ASCII standard or in defacto standards such as IBM's
EBCDIC. The ASCII standard exists for 7-bit and 8-bit encoding as well as for a multilingual
graphic character set.

User intertace Technology Survey | CMU/SE}87-TR-6

ANS! has defined a standard (X3.64) for the interface between CRT terminals and computers.
This standard is very close to the functionality of the DEC VT100 terminal. Other terminal
hardware vendors have adopted this standard by providing an emulation mode. (As it tums out, it
is the VT100 terminal more often than the X3.64 standard that is being emulated.) On worksta-
tions with bitmap displays, window systems provide one window type to emulate this terminal
standard [97). Such an emulation permits the workstation o be treated as a terminal-to anothei
machine and allows programs 10 be ported and run on the workstation with little effort, but without
adaptation to additional capabiiities of the window system.

Several standards exist in the graphics area. Close to the hardware level, a standard for a device-
independent interface 1o different graphics equipment was defined in the form of a virtual device
interface/metafile (VDVVDM), now known as computer graphics interface/metafile under ANSI
X3H3.3. The metafile specification defines a mechanism for storing and transmitting graphical
images. Below the VDI level, NAPLPS defines a standard method for encoding character and
point information for driving videotext devices. The GKS defines a virtual graphics model and
provides an interface to the appiication. A device-independent implementation of GKS resides on
top of the VDI level. Bono [14] explains the interrelationship of these and other graphic standards
in more detail and discusses their role in information interchange.

GKS was adopted as a standard by ISO/TC 97 (ISO/DIS 7942). The standard includes proposals
for language bindings of the GKS package to common languages such as Ada (ISO/DP 8651/3).
Proposals exist for a GKS for three dimensions (ISO/DP 8805), and a metafile description for
graphical representations (ISO/DP 8632). Waggoner [136] points out differences in the two stan-
dards and gives reasons for the success of GKS. Developing UIMS on top of GKS has proven
feasible, but has also uncovered some shortcomings due 1o the mismatch between the model of
the graphic system and the UIMS [132]. The toois available in the standard graphic system are
hademateforsuppomngstaﬂcordynanicdlvlsbndttwmenImowlndws[106]andfor
providing a linkage between input and output [92].

Standardization efforts are in progress for document interchange formats. 1SO has proposais for
standardization of text preparation and interchange for text structures (ISO/DP 8613/1-6) and for
processing and mark-up languages (ISO/DP 8879). For a status report on this and other efforts in
document interchange, the reader is referred to Horak [59].

Military guidelines and advisories exist in various forms such as MIL-STD-1472C (Human Engi-
neering Dasign Criteria for Military Systems, Equipment, and Facilities) {31] and ESD-TR-83-122
(Design Guidelines for the User Interface to Computer-Based Information Systems) [118].

6.3.3. Defacto Standards

UNix, which has two major branches of evolution (Berkeley 4.2 and AT&T System V), is becoming
a defacto industry standard for operating systems. UNix has made several advances regarding
user interfaces. It provides a command language (sh and its variants csh and ksh) that enables
programmability and easy extensibility of the command set. It supports command history, execu-
tion of previous commands, and editing of commands. Through the termcap interface, Unix
provides terminal-independent access to CRT terminais. The uniform treatment of terminal, file,

" s i 3 B g 0 i) oy . v SR
R [E RN)"";‘4 5 a)‘ky". 1"”"‘ \"‘.“‘.t" AT T N 1‘““1"‘ R N

CH
Ty

(SO DH IR TN

Y

| "‘:'mvommmnndmmmmm
mqmmuuammmmnnmmmu
i

-mmmmmmmmmm Xarox, a8 past
#bmWMMMWNWWMUnmm
PosiBorijt {2] |s a device-indepandent page desoription language that is quickly

becoming the indusiry standard for printing high-casality integrated text and graphics. PostScript
has been incorporated into laser printers manutackred by Apple Computer, Alled Linotype, QMS
incorporated, and Detaproducts Cosporation. R is supporied by document production systems
such as Sorbe, MacWriteMacPaint, etc. MicrosoRt is propagaling SYLK, a symbolic ink file
format for ASCIi representation of data for transler and exchange between different appiications
such as the Muliplan spreadsheet program [82].

User intestase Technology Survey

7. Summary of issues

The intent of this sectlion is 10 summasize issues regarding different aspects of user intertaces.

The resolution of the summarized issues is viewed as advancing the state-of-practice of user
interface technology and increasing the use of advanced user interface technology in the work
onvironment of sotware engineering. The issues fall into two groups. The first group deals with
the fact that one cannot expect 1o find homogensous computing environments, but must expect to
cope with helerogensous computer equipment. The second group focuses on the heterogeneity
of appiications (software t100ls) and users, and the ablity of the user interface to appropriately
support &. .

7.1. Heterogeneous Computing Environments

Today there is a proliferation of workstations. These workstations can be placed in one environ-
ment by wiring them together into one local area network. Furthermore, users may work from
home using a modem and a character terminal or workstation. This physical connection, how-
ever, does not make the resources available to the user in a transparent manner. Applications are
bound 10 specific hardware and cannot be executed remotely on different hardware. The display
functionality provided on one workstation may not be available on another one. The connection
bandwidth between different workstations may make certain modes of operation intolerable. Is-
sues of system partitioning, portability, and distribution need 10 be ackiressed in order to bring
improvements to the work environment of sofiware engineers, most likely heterogeneous comput-
ing erwironments.

Many fools, both interactive and noninteractive, make up the work environment of sofiware engi-
neers. Software development environment buiiders cannot be expected 10 provide all tools them-
seives. Tools are being deveioped by different groups on different hardware and software, provid-
ing different user interfaces. Integrating this mulipiicly of fools into a consistent and uniform
environment is a challenging task. Proliferation of hardware, at least on the desk of a single
software engineer, must be reduced. Tools must be able 1o interact with each other, share and
exchange information. Furthermore, R is desirable for a user to interact with one conceptually
uniform user interface, even for 100is on different hardware and operating systems. Existing tools
cannot always be discarded and must be adapted 10 the user interface of the environment. The
increase in sophistication of user interface technology and the lack of interface standardization at
a high functional level has made the resolution of these problems a difficult task.

7.2, Heterogeneous User Groups

Users are a heterogeneous population. For users to be most effective, the user interface of a
system should adapt to the needs and capabilities of a user. Preconceived notions of expertise in
a system are often more of a hindrance than a help because the degree of expertise can vary
greatly even within one application and can change over time by nonuse of the system. Given
sppropriate tools, the user can perform some tailoring of the user interface himselt.

,;,f;v-ummmmmmmaummmm
i interieoes 10 applications. However, they often reflect their designer’s view of user interactions.
' \MMMMdemmemmmma
© taciy fof's User interface designer 1o indicate his cholces regarding appearance and behavior of
... the user Waeriace. The designer should be guided by known design principles and guidefines

- _Mb&u wmmm This knowledge should be formakzed and em-

MhtWMhMbWhWtﬂnwmmm attempt to
achigve the appearance of an integrated sotware development environment with a uniform user
intertace. At issue is the appropriate balance between flexibility and standardization of the user
mmamwmwmmuwwmm
bullt into the user interface, e.g., support for different degrees of expertise. Certain properties of
the user inlerface shouid be specified onoe for a particuler environment and left relatively stable.
L if parameterization o indivicuale is supported, there should be a simple way for changing & to that

, of a different indivicisal in short notice, ¢.g., one pereon walking up to another person’s display
and being able 10 help him without being conlronted with tallored keybindings.

The techniques for evaluation of user interfaces require further attention. Work derived from
applied cognitive psychology resulted in some models for quantitatively measuring basic inter-
action steps. Additional models that address other aspects of user interfaces need to be devel-
oped together with 10ols for canying out the evaluation. Benchmarks must evolve 10 allow for a
fair comparieon of resulls.

‘hlﬁmhmmdamﬂmmm“,
‘Pebject at e Comguiter Science Department, Camegie-Melion University,
wmu-uumw _This bibllography contributed approximately 30% of the

Ihﬂ!m

D e R A R L B

'mn‘awmumuammmmm
Apolio-and DOMAIN are registered trademarks of Apollo Computer, inc.
" DEC, MIoroVAX, VAX, VMS, and VT are trademarks of Digial Equipment Corporation.
" Froggeris a trademark of 8898 and Sierra On-ine, inc.
Knowlecige Craft is trademask of Camegie Group, in.
Knowledge Engineering Environment is a trademark of intelicorp.
Jazz ie a trademark of Lotus Development Corporation.

MacProject, MacTerminal, and Apple are trademarks and Macintosh is a trademark licensed to
Appie Computer, inc.

POSTSCRIPT is a trademark of Adobe Systems Incorporated.
Scribe is a registered trademark of UNILOGIC, Lid.
Smaltak-80 and Xerox Star are trademarks of Xerox Corporation.
Sun is a trademark of Sun Microsystems, inc.

- UNiX Is a registered trademark of Bell Laboratories.

4

110

1)

11g

(13)

nﬁuuu.mmmn.mm
W A Proposal for a Standard for the interchange of Editable Documents.

R. Bascker, W. Buxion, and W. Resves.

Tn;aFMWW Some Examples from Computer-Aided Musi-

i Proc. @i Adan Compuler Communicalions Conference, pages 197-207. Compuler

J. Eugene Bal.

Ao as Terminal.

1980. ,
Documentation of an Ao program.

J. Eugene Ball.
Carvas: the Spice praphics package.

Technical Report Spice Document S108, Camegie-Mellon University, Dept. of Computer
Sclence, August, 1981.

Devid R. Barstow, Howard E. Shrobe, and Erik Sandewall, eds.
interaciive Programming Environments.

MoGraw-Hill, 1984.

Leonard J. Bass.

An Approach 10 User Specification of interactive Display interfaces.

IEEE Transactions on Software Engineering SE-11(8):608-008, August, 1985.

C. G. Bell, A. Newel, and D. P. Slewiorek.

Computer Siruciures: Principles and Examples.

MoGraw Hil, Computer Systems Serles, 1982,

T. Bieser and James D. Foley.

Towards Specitying and Evaluating the Human Factors of User-Computer intertaces.
in Human Factors in Compuler Systems Proceedings. March, 1962.

i

(g

"9

8

5§ 8 8 E B

- m Rnn.

CMU/SEL-87-TR-6

Swandards and Their Role in information !
m m ot Suendarcs nterchange.

H.n.mn.w l«mmuw ton Hagen.

Dlalogue Celis: A Method for Defining interactions.
IEEE Computer Graphice and Appiications 2(8)25-33, July, 1982.

Q. P. Brown, R. T. Caring, O: F. Herot, D. A. Kramilgh, and P. Souza.
Visuaikzagion:

Program Graphical Support for Sofiware Development.
Conputer 18(8)27-38, August, 1985.
'&Wmmrmm Fi
. aciors.
The Report Store, 1984.)
Willlam Buxion and Richard Sniderman.
Neration in the Design of the intertace
in Paul Stager (editor), Qualty of Work Life and Human Factors, pages 72-81. Human
Faolors Association September, 1980
13th Annual Mesting.
Willam Buxton.

An informal of Selection Positioning Tasks.
Mb&mm 1962.

Willlarn Buxton.
wmmc«mamm
Computer Graphics 17(1):31-37, January, 1963.

wmuam&mm&am
owards & Comprehensive interface Management System.
Computer Graphics 17(3), July, 1983.

2. U.Cahnand A. C. Yen.
Computer Graphics 17(3):167-173, .m' 1083,

A. Caiir, D.J. Hart, and T.F.M. Stewart.
Visual Dispiay Terminale.
John Wiley & Sons, 1960.

Mf'hhdeT Editing
ext
Technical Report SSL-78-1, Xerox PARC, August, 1978.

Suart K. Cand, Thomas P. Moran, and Allen Newell.
The Keystroke-Level Model for User Performance Time with interactive Systems.
Communications of the ACM 23(7):396-400, July, 1979.

Suart K. Card, Thomas P. Moran, and Allen Newell.
The Peychology of Human-Computer interaction.
Lawrence Erbaum Associstes, Hilledale, N.J., 1963.

Swuart K. Card, M. Pavel, and J. E. Farrell.
Window-Based Computer Dialogues.
In interact 84, pages 355-359. IFIP, Elsciver, Science Publisher, September, 1984.

DwidW, Enbioy ond Gooe begy.
| ACM me:m 13(1)38-70’ March, 1081.

" Kennetti 8, Evans, Peter P. Tanner, and Marell Weln. :
* Tablet-Based V. Mwm Provide One, Two, or Thwee Degress of Freedom.

mmm«&o wmmm-ﬂ ACM, August, 1981,

Programming Erwironment.
‘QMMMW&‘R&. September, 1981,
Peler M. Feller and Qall E. Kalsar.
Diiplay-Ovignted Struchure

Peter H. Foller, Fahimeh Jalll, and Johann H. Schilchier.
Anmmmmmmumm
hmdwbmwmrummwm ACM,IEEE, Jan-

C.N. Fischer, A. Pat, D.L. Stock, G.F. Johneon, and J. Mauney.
POE Language-Based Editor
in Software Engineering Symposium on Praciical Software Development Environments.

3

[46]

151

VV James D.

Foley, Victor L. Wallace, and Peggy Chan.
The Human Factors of Computer Graphics interaction Techniques.
IEEE Computer Graphice and Applications 4(11):13-48, November, 1964.

Mark 8. Fox and Andrew J. Palay

The BROWSE System: An Inockuction. -
mR N , 8. E. Robertson, C. J. van Rijsbergen, and P. W. Williams (editor),
iy Cholces and Policies, pages 183-190. ASIS, Butterworth’s, London,

Mark 8. Fox and Andvew J. Palay.

Browsing wough detabases.
information Retrieval Ressarch.

" Butterworiivs, Londdn, 1981, pages 310-324.

m&mwam o
Wm&mimmun. s-pmbu' 1982.
Jason Gelt.

An Aspect of Assthelivs in Human-Computer Communications: Windows.
mmmﬂmwse-ﬂm T14-717, m 1968.

information Presentation Automaiic Graphic

n uumm pages 433-445. Oniline Conlerences
Limiled, wm.mut.m 1981.

Adele Goldberg.

The influsnce of an Object-Oriented Language on the Programming Environment.

interactive Programeming Environments.

MoGraw Hill, 1964, pages 141-174, Chapter 8.

Adele Goldberg.

Smaltalk-80: The interactive Programming Environment.

Addison-Wesley, 1984.

Michas! Good.

Elude and the Folkiore of User interface Design.

mmzfgmm&mm Text Manipulation, pages

AbomOllco mmon“ Group Memo OAM-030, Massachusetts institute of Technology,
1981.

Robert B. Grafion.

Visual Programming.

Computer 18(8):8-9, August, 1965.
cd:'amodwu Iinteraction Techniques.

Computer Graphics 17(1):46-52, January, 1983.

[e2)

[e4]

#gmuwwm
PhD thesls, tiriversity of Toronlo, April, 1965.

M. Hammer, R. lison, T. Anderson, E. J. Gilbert, M. Good, B. Niamir, L. Rosenstein, and
8. Schoichet.

The implementadion of Eludes, an integrated and interactive document production system.
in SIGPLAN Notices (editor), Proc. ACM SIGPLAN SIGOA Symp. Toxtumlpuaﬂan
pages 137-141. June , 1961.

Wilired J. Haneen.
Unr Principles for interactive Systems.
mm 523-532. American Federation of information
Processing Soclety, LuVogll.Ntmnbor 1971.
mmhmwmno}.

P.J. Hayes.

Cooperative System.
mwummmmmw University of
London, July, 1982, o T o

P. J. Hayes, P. A. Szekely, and R. A. Lemer.
ARematives for User interface Management Systems Based on Experience with

In Proceedings of CHISS. San Francisco, April, 1985.

W. Horak.

Office Document Archilecture and Office Document interchange Formats: Current Status
of intemational Standardization.

IEEE Computer , Ockober, 1965.

Bruce
The interieaf Publishing System.
Unix World 1(5):94-87, December, 1984,

intemational Standards Ovganization.
Graphical Kemel System.
&:gxsmnsv.

Robert J. K. Jacob.

A State Transition Diagram Language for Visual Programming.
Computer 18(8)51-59, August, 1985.

A. Janda.

index o Post-1960 Literature on Computer-Human interaction.
ACM SIGCHI Buletin , July, 1983.

Abld Kamran and Michael B. Feldman.

Graphiocs Programming independent of interaction Techniques and Styles.
Computer Graphics 17(1):58-68, January, 1963.

fee)

7]

3333

John Karet, James E. McDonald and Matt Anderson.
A Comparison of Selection Techniques: Touch Panel, Mouse and Keyboard.
In interact ‘84, pages 146-183. IFIP, Elsciver, Sclence Publisher, September, 1984.

David J. Kask.

A User Inlerface System.

ACNM Computer 16(3):90-108, July, 1082,
B.W. Kun#ln.

PIC-A for Typesetting Graphics.
ACM SI@’LAN Notices 16(6):92-98, June, 1981.

J.M. Latuente and D. Grise.
Language Facilties for Programming User-Computer Dialogues.
1BM J. Ree. Develop. 22(2):145-158, March, 1978.

David B. Leblang and Robett P. Chase, Jr.

Computer-Alded Sotiware Engineering In a Distributed Workstation Environment.

in Peter Henderson (ediior), MNhACMSIGSOFTISIGPLAN&MmEngI-
neering Symposium on Practical Software Development Environments, pages

104-112. ACM, May, 1964.

Phil Lemmons.
Microsoft Windows.
Byte Magazine :48-54, December, 1983.

Ralph L. London and R. A. Duisberg.

m1u8)31-7mm 1985.

Apple Computers. .
Macintosh MacPaint.

Product Manual.

1964

Apple Computers.
Macintosh MacTerminal.
Product Manual.

1964

Apple Computers.
Macintosh MacWrite.
Product Manual.
1984

James Martin.

Design of Man-Computer Dislogues.
Prentice Hall, Englewood Clilfs, NJ, 1973.

lssscammmazzmma(z)w MarchvApril, 1983.

W EdRting: Towards integrated Programming Environments.
PhD thesis, Camegie-Melion University, 1962.

B. Melamed and R. J. T. Moris.

Visual Simuiation: The Performance Analysis Workstation.
Compuier 18(8) 87-94, August, 1985.

7

mmwm\mm
interactive Editing Pasts | and i,
Computing Surveys 14(3):321-415, September, 1982.

[60] Thomas P. Moran.
An Applied Psychology of the User.
ACM Computing Surveys 13(1):1-12, March, 19681,

[81] R. Morieon, A. L. Brown, A. Dearle, and M. P. Atkinson.
An Intepyrated Graphics Programming Environment.
Technical Report PPR-14-85, University of Glasgow, July, 1985.

[82] Microsoft Cormp.
Microsoft Multiplan.
Prowadowbtbnmmnl.
! 1984
[83] Allen Munvo.
Fllevision: The Data Base Worth a Thousand Words.
St. Mac :A5-50, August, 1964.

{84] Brad A. Myers. ,
Displaying Data Structures for interactive Debugging.
‘Master’s thesis, MIT, June, 1980.

[85] Brad A. Myers.
The User interface for Sapphive.
IEEE Computer Graphics and Applications 4(12):13-23, December, 1984.

[86] |. Nassi and B. Shneiderman.
Flowchart Techniques for Structured
SigPian Notices SE-6(1), August, 1973.

" [87] John R. Nestor, Wiliam A. Wulf, and David A. Lamb.
IDL - Intorface

Description Language.
Formal Description, CMU Department of Computer Science, 1982.

[88] Wiliam M. Newman and Robert F. Sproull.

Principles of interactive Computer Graphics.
McGraw-Hill, 1979.

[89] Donald A. Norman.
Four Stages of User Activities.
In Interact ‘84, pages 81-85. IFIP, Elsciver, Science Publisher, September, 1984.

[90] D. Notkin.
Interactive Structure-Oriented

Computing.
PhD thnls. Department of Computer Science, Carnegie-Mellon University, February,

[91] DanR. Olsen Jr.
Automatic Generation of Interactive Systems.

Computer Graphics 17(1):53-57, January, 1983.

[92] Dan R. Olsen, W. Buxton, R. Ehrich, D. J. Kask, J. R. Rhyne, and J. Sbert.
A Context for User interface Management.
IEEE Computer Graphics and Applications 4(12):33-42, December, 1984.

8

(96}

971

[100]

{101]

(102

{103]

[104]

[108]

David L. Pamas.
On the Use of Transition Diagrams in the Design of a User interface for an Interactive

Compuler System.
m%wmumzmwmcmm pages 379-385. July,

Gary Periman.
Making the Right Choices With Menus.
In interact ‘84, pages 291-295. IFIP, Elsciver, Science Publisher, September, 1984,

Michel Pliote.
A Programming Language Framework for Designing User interfaces.

Proc. Sigplan '83 Symposium on Programming Languages Issues in Software Systems

18(6):118-138, June, 1983.

A. Poggio, J. J. Garcia Luna Aceves, E. J. Craighil, D. Moran, L. Aguilar, D. Worthington,

and J. Hight.
CCWS: A Computer-Based, Multimedia information System.
IEEE Computer 18(10):92-103, October, 1985.

Vaughan R. Pratt.
Standards and Performance lssues in the Workstation Market.
IEEE Computer Graphics and Applications 4(4):71-76, April, 1984.

Georg Raeder.
A Survey of Current Graphical Programming Techniques.
Computer 18(8):11-25, August, 1985.

H.R. Rameey, and M.E. Atwood.
Human Factors in Computer Systems: A Review of Lierature.
fggmw‘alm..w CO (available from NTIS as AD A075679).

R.F. Rashid, M. Jones, and R. Thompson.
Maichmaker: An Interface Specification Language for Distributed Processing.

In Principles of Programming Languages. ACM, January, 1981.

R.F. Rashid and G.G. Robertson.

Accent: A communication oriented network operating system kernel.

In Eighth Symposium on Operating System Principles. ACM, November, 1981.

Brian K. Reid.
Scribe: A Document Specification Language and its Compéer.
PhD thesis, Camegie-Melion University, October, 1980.

Phyllis Reisner.

Human Factors Studies of Database Query Languages: A Survey and Assessment.

ACM Computing Surveys 13(1):13-32, March, 1881,

Steven P. Reiss.
Development with PECAN Program Development Systems.

Graphical Program
In Prmmormsnsoms:ammsmmswmymm Practical

Software Development Environments. April, 1984.

M«ynloywcmow»lua‘y«
A Framework for Analyzing -Computer Interactions.
in interact '84, pages 88-91. IFIP, Elsciver, Science Publisher, September, 1984.

-‘_'.-:,omsn Rosenthal.
Managing Graphical Resources.
' mm 17(1):38-45, January, 1963.

[107] D.T. Ross. o .
2E Computer , Apri, 1985.)

[108] L.A. Rowe and iK.A. Shoens.
o Programming Language Constructs for Screen Definition.
lEEmmeUSE-O(1)31-39 January, 1983.

1

(0d] Pmmmmmmsmmm mlmerLlspExpeﬂeme
Acuwmw1om.m1m A

Aleo published in nteractive Programming Environments [10].

[110} M. Satyanarayanan.
The ITC Project: A Large-Scale Experiment in Distributed Personal Computing
in Proceedings of the Networks 84 Conference, hmnlvaoofTadmlogy(Madras)
Oclober 1984. North-Holland, 1984.
mmummmwunc-oas

[111] N.M. Dolhlo D. E. Menicosy, and Mayer D, Schwartz.
m-mmmum
Technical Report CR-83-18, Tekironix, inc., February, 1984.

[112]‘J Scybokl.

mmsomukqmsmumwm Media, Pennsylvania, 1961.
[113] Mary Shaw, Ellen Borison, Michael Horowiz, Tom Lane, David Nichols, and Randy

Descartes: A Programming-Language Approach 1o Interactive Dispiay Interfaces.
Proc. Sigplan '83 Sympogium on Programming Language Issues in Software Systems
18(6):100-111, June, 1983.

114] Mary Shaw.
14 An Input-Output Model for interactive Systems.
In Proceedings of the NGIVSION Annual Symposium. Utrecit, Netherlands, April, 1985.

[115] Ben Shneiderman.
Software Psychology: Human Factors in Computer and Information Systems.
. Wintthwop Publishers, Inc., Cambridge, Massachuseits, 1980.

[116] Ben Shneiderman.
Response Time and Display Rate in Human Performance with Computers.
ACM Computing Surveys 16(3):265-285, September, 1984.

(117] Q.E. Sievert and T. A. Mizell,
Software Engineering with TAGS.

Specification-Based
' IEEE Computer , April, 1985.

[118] 8. L. Smith and A. F. Aucella.
Design Guidelines For The User Interface To Computer-based Information Systems.
Technical Report SEI: ESD-TR-83-122, DTIC: AD-A 127, NTIS: 345/7, Electronic Sys-
tems Division, Hanscom Alr Force Base, 1983.

- [128]
- (129
(124]
(128]

(12¢}

ha27]

128

(129}

(130)

(131)

P “ R
<

[$21] RM. Staliman.
EMACS: The tadenabl, ¢

.........

Wm
%mmwuc«wm Camegie-Melion University.

Robent F.Sproul.
wmrm&mmmm
mmmmwmmwm December, 1977.
nﬁmmrmw SIGPLAN“SBOA.M
Mnﬂmhpﬂnﬂhkmwmnu

J. F. Siay.
mwwmm
uwmm»mnm
D. C: Swinehart.

Capiiot: A Multple Process Approach fo inferactive Programming Systems.
PO thesls, Stanford University, July, 1974.

D.C. MLO.MNS M. Omstein.
Adding Voice 1o an Ofice

Technical Report CSL-83-8, mwm 1964,

Peler P. Tanner and Willlam A.S. Buxton.

Some lssues in Fulure User interface Manegement Syatem (UIMS) Development.

n Workshop on User interface Management. IFIP, Februasy, 1984,

D. Telchrosw and E. A. ¢ .

PSLAPSA: AW mmwmmmu

IEEEMmSEM) , 1977,
Tim Tellslbaum and Thomas Reps.

Dispiay-Oriented Programmer's Assistant.
nmu:‘%mmmuwmm
Also published In Mieracive Programming Environments [10].

mmvmmuum.
mm.mzt
Also published In eraciive Programming Environments [10].

Am;uﬂ
mmmn.ml.m

L. Tesler.
The Smallialk Environment.

Syte Magazine , August, 1981.

F

3

3 i3 ,i i 3:'3'.9:;

N s "N?" PR

md.m

SRR

mm of Guantiiative information.
X

Pages. CT, 1988,

uuu.
mu&mmmm

3.3“ Speciyig Prckures.
Wm m 1(2):163-182, April, 1962,

Mnmhmm
Ewvograph 93 383-374, 1983.

Janst H. Walker and Rishang M. Sialiman.
rmmmmmwmwm.

L. Wasserman.
State Transition Diagrams for the Specification of Human-Computer interac-

Son.
MESE Transactions on Sofware Engineering SE-11(8):000-713, August, 1985.

‘m

Masintosh Compater.
“ , 1004, :
tan H. Whten and Beb Sramwvell.

A Systom for intomasiive of Swuciured Documents.
Communivations ACM March, 1985.

MGCM““R.M

“5:74-. My, 1962,

N AE) S5

REPORT DOCUMENTATION PAGE

16, RESTRICTIVE MARKINGS 3

b L [1]

v eu.maﬂon AUTHNORITY 3. DtgﬂllWlWAVAILA!luTY OF ARPOAT
BIA : | UNLIMITED, DTIC
DECLAISIFICATION/DOWNGRADING SCHEDULE
» 'n:mo ONGAMIZATION AEPOART NUMBER(S) 8. MONITORING ORGANIZATION AGPONT NUMSER(S)
- CMU/SEI-87-TR~6 ESD~-TR-87-107 .

OF PERFOAMING ORGANIZATION b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

. g (;) R
| sornuze meoEmRmc msT, | HE SEI JOINT PROGRAM OFFICE
ADORESS (Clty, Siats and XIP Code) ~ 70. ADORESS (Clty, State and ZIP Code)
I CARNEGIE-MELLON UNIVERSITY ESD/XRS1
.-§ PITTSBURGH, PA 15213 HANSCOM AIR :?521'; BASE
NAME NGAPONSORING OBFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMSER
ORGANIZATION Ul epplioabie)
SEI JOINT PROGRAM OFFICE ESD/XRS1
8. ADDRESS (City, Siate end ZIP Code) 10, SOURCE OF FUNDING NOS.
1 CARNEGIE-MELLON UNIVERSITY PROGAAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. No.
: — 63752r N/A N/A N/A
V1. TITLE (Incinds Socurify Classificstion)
USER INTERFACE TECHNOLOGY SURVEY

12. PERBONAL AUTHOR(S)
PETER FEILER

e ——————— T ————
a TYPE OF REPORT 130 TiME COVERED 14. OATE OF ARPORT (Yr., Mo., Dey) 18. PAGE COUNT
at. FROM TO IL 87 5‘

%6, SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary end identify by block number)

7.

ese | gnoue _sup.gn_

9. ABSTRACT (Coniinue on reverse if nessssury end ideniify by block number)

THE TECHNOLOGY IDENTIFICATION AND ASSESSMENT PROJECT COMBINED A NUMBER OF RELATED .
- INVESTIGATIONS TO IDENTIFY:

* EXISTING TECHNOLOGY IN A SPECIFIC PROBLEM AREA TO REVIEW RESEARCH
AND DEVELOPMENT RESULTS AND COMMERCIALLY AVAILABLE PRODUCTS;

* NEW TECHNOLOGIES THROUGH REGULAR REVIEWS OF RESEARCH AND DEVELOPMENT
RESULTS, PERIODIC SURVEYS OF SPECIFIC AREAS, AND IDENTIFICATION
OF PARTICULARLY GOOD EXAMPLES OF THE APPLICATION OF SPECIFIC
TECHNOLOGIES;

* REQUIREMENTS FOR NEW TECHNOLOGY THROUGH CONTINUING STUDIES OF SOFTWARE
DEVELOPMENT NEEDS WITEIN THE DOD, AND CASE STUDIES OF BOTH SUCCESSFUL
AND UNSUCCESSFUL PROJECTS.

THIS REPORT IS ONE OF A SERIES OF SURVEY REPORTS. I NOT INTENDED TO PROVIDE
B0 O1STMSUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECUAITY CLASSIFICATION .
H umcLASMeBO/AMLINTED] same as rer. O oTic usans [UNCLASSIFIED, UNLIMITED DISTRIBUTION
.- 23c. OFFICE SYMBOL ,
NAME o.o.mm.l INDIVIDUAL . "l;lLlPHm g‘:"d,lll]
‘ 412 268-7630 : [PQ -
ORM 1473, §3 APR RDITION OF 1 JAN 73 18 OSSOLETS.

SECURITY CLASSIFICATION OF THIS PAGE &

UK ZH e 6k e

